THE WEIGHT DISTRIBUTION OF SOME MINIMAL CYCLIC CODES

Monika Sangwan(Research scholar)Department of Mathematics, Guru Jambheshwar University of Science and Technology, Hisar 125001(India) Email. monika.gjust@gmail.com

ABSTRACT Let F_q be the finite field with q elements, p be an odd prime co-prime to q and m ≥ 1 be an integer. In this paper, we explicitly determine the weight distribution of all the minimal cyclic codes of length p^m over \overline{F}_q from their generating polynomials in a special case, when the multiplicative order of q modulo p^m is a power of p.

Keywords: Minimal cyclic codes, Cyclotomic cosets, Weight distribution.

INTRODUCTION

Let F_q be the finite field with q elements and n be a positive integer co-prime to q. A cyclic code C of length n over F_q is a linear subspace of F_q^n with the property that if (a_0, a_1) $a_1, \ldots, a_{n-1}) \in C$, then the cyclic shift $(a_{n-1}, a_0, \ldots, a_{n-2})$ is also in C. A cyclic code C of length n over F_q is also called a q-ary cyclic code of length n. We can also regard C as an ideal in the principal ideal ring $R_n := F_q[x]/\langle x^n - 1 \rangle$ under the vector space isomorphism from F_q^{n} to R_n given by $(a_0, a_1, ..., a_{n-1}) \alpha a_0 + a_1 x + ... + a_{n-1} x^{n-1}$.

It is known that any ideal C in R_n is generated by a unique monic polynomial $g(x)$, which is a divisor of (x^n-1) , called the generating polynomial of C. A minimal ideal in R_n is called a minimal cyclic code of length n over F_q .

If C is a cyclic code of length n over F_q and $v \in C$, then the weight of v, wt(v), is defined to be the number of non-zero coordinates in v.

If $A_w^{(n)}$ denotes the number of codewords in C of weight w, w ip 0, then the list (n) $A(n)$ 1 (n) $a_0^{(n)}, A_1^{(n)},..., A_n^{(n)}$ $A_0^{(n)}$, $A_1^{(n)}$, ..., $A_n^{(n)}$ is called the weight distribution of C. The weight distribution of minimal cyclic codes has been an interesting object of study for a long time and is known in some cases. Ding [2] determined the weight distribution of q-ary minimal cyclic codes

of length n provided $2 \leq \frac{q^{O_n(q)} - 1}{1} \leq 4$ $\leq \frac{q^{O_n(q)}-1}{\leq}$ *n* $q^{\mathit{O}_n(q)}$, where $O_n(q)$ denotes the multiplicative order of q modulo n. He also pointed out that the weight formulas become quite messy if $\frac{(q)}{1}$ > 5 $\frac{-1}{2}$ *n* $q^{\mathit{O}_n(q)}$ and therefore finding the weight distribution of q-ary minimal cyclic code

is a notoriously difficult problem.

In this paper, we determine the weight distribution of all the minimal cyclic codes of length p^m over F_q , where p is an odd prime co-prime to q and m≥1 is an integer, for the case where multiplicative order of q modulo p^m is a power of p. In Section 2, we list all the minimal cyclic codes of length p^m over F_q and show that in order to determine the weight distribution of any of these codes, it is sufficient to find the weight distribution of the q-ary minimal cyclic code of length p^r , 1≤r≤m, which corresponds to the qcyclotomic coset containing 1. In Section 3, we find the weight distribution of the minimal cyclic code of length p^r , $1 \le r \le m$, which corresponds to the q- cyclotomic coset containing 1 in the case defined above. Finally, in last, we also give an example.

2. Minimal cyclic codes and their weight distribution

Let F be the finite field with q elements and let n be a positive integer co-prime to q. Let α denote a primitive nth root of unity of some extension field of F_q . For any integer s, 0≤ s \le n-1, the q -cyclotomic coset of s modulo n is the set

$$
C_s := \{s, sq, sq^2, ..., sq^n\}
$$

Where n is the least positive integer such that $sq \equiv s \pmod{n}$. Corresponding to the qcyclotomic coset C_s , define

$$
M_s^{(n)}(x) \coloneqq \prod_{j \in C_s} (x - \alpha^j)
$$

and

 $M_s^{(n)}$:=the ideal in R_n generated by (x) 1 $M_s^{(n)}(x)$ *x n s* $\binom{n}{ }$

It is known that $M_s^{(n)}(x)$ $\int_s^{(n)} (x)$ is the minimal polynomial of α^s over F_q and $M_s^{(n)}$ is a minimal cyclic code of length n over F_q , called the q-ary minimal cyclic code of length n corresponding to the q-cyclotomic coset C_s . Furthermore, if C_{s1} , C_{s2} ,..., C_{sk} are all the distinct q-cyclotomic cosets modulo n, then $M_{\rm st}^{(n)}$, $M_{\rm s2}^{(n)}$, ..., $M_{\rm sk}^{(n)}$ 2 (n) $\overline{\mathcal{M}}^{(n)}_{1},\overline{\mathcal{M}}^{(n)}_{s2},...,\overline{\mathcal{M}}^{(n)}_{sk}$ *sk n* $M_{s_1}^{(n)}, M_{s_2}^{(n)},..., M_{s_k}^{(n)}$ are precisely all the distinct minimal cyclic codes of length n over F_q . We have the following:

Theorem 1. Let F_q be the finite field with q elements, p be an odd prime co-prime to q and $m \ge 1$ be an integer. Let g be a primitive root modulo p^m .

(i) The codes
$$
M_0^{(p^m)}, M_{g^k p^j}^{(p^m)}, 0 \leq j \leq m-1, 0 \leq k \leq \frac{\phi(p^{m-j})}{\sigma_{p^{m-j}}(q)} - 1
$$
, are precisely all the

distinct minimal cyclic codes of length p^m over F_q , where denotes ϕ Euler's Phi function.

(ii) All the non-zero codewords in $M_0^{(p^m)}$ 0 $M_0^{(p^m)}$ have weight p^m.

(iii) The code $M_{\lambda_1}^{(p^m)}$ $M_{g^{k}p^{j}}^{(p^{m})}$ is equivalent to the code $M_{p^{j}}^{(p^{m})}$ $M_{p}^{(p^m)}$ and therefore they have the same weight distribution.

(iv) (p^m) $M_{p}^{(p^m)}$ Is the repetition code of the minimal cyclic code $M_1^{(p^{m-j})}$ 1 $M_1^{(p^{m-j})}$ of length corresponding to the q-cyclotomic coset containing 1, repeated p^j times. Furthermore, for any $w \geq 0$,

$$
A_{w}^{(p^{m})} = \begin{cases} 0\\ \text{if } p \text{ does not divide } w; \\ A_{w'}^{(p^{m-j})} \text{ if } w = p^{j}w', 0 \leq w' \leq p^{m-j}. \end{cases}
$$

Where $A_w^{(p^m)}(resp.A_w^{p^{m-j}}), w \ge 0$ *w p* $w_w^{(p^m)}(resp. A_w^{p^{m-j}}), w \ge 0$, denote the weight distribution of $M_{p^j}^{(p^m)}(resp. M_1^{(p^{m-j})}).$ (p^m) μ ^{*m*-*j*} $\displaystyle \mathop{M}_{p}^{(p^{m})}$ (resp. $\displaystyle \mathop{M}_{1}^{(p^{m-1})}$

Proof. By [3, Lemma 1], all the distinct q-cyclotomic coset modulo p^m are given by 1 (q) (p^{m-j}) $C_{g^k p^j}, 0 \le j \le m-1, 0 \le k \le \frac{\varphi(p^j-1)}{2}$ \overline{a} - $O_{n^{m-j}}(q)$ $C_0 C_{e^{k} \times i}$, $0 \le j \le m-1, 0 \le k \le \frac{\phi(p)}{p}$ *m j k j p* $m - j$ *g p* $\frac{\phi(p^{m-j})}{\phi(p^{m-j})}$ –1. Therefore, (i) follows, (ii) and (iii) are

obvious. The proof of (iv) is similar to that of Lemma 2 of [4].

It thus follows from the above theorem that the weight distribution of all the q-ary minimal cyclic code of length p^m can be determined from the weight distribution of q-ary minimal cyclic code $M_1^{(p^r)}$ 1 $M_1^{(p^r)}$ of length p^r (1≤ r ≤m), which corresponds to the q-cyclotomic coset containing 1.

3. The weight distribution of $M_1^{(p^R)}$ 1 $M_1^{(p^R)}$, **1≤ r≤ m**

We use some notations like $P_1(v)$, $L(v_1, v_2,..., v_t)$, $N(v)$ which are described in [1]. Throughout this section, F_q denotes the finite field with q elements, p be an odd prime co-prime to q and m≥ 1, an integer. Let $1 \le r \le m$ be fixed throughout. In this section, we determine the weight distribution of q-ary minimal cyclic code $M_1^{(p^r)}$ 1 $M_1^{(p^r)}$ of length p^r corresponding to the q-cyclotomic coset containing 1, for the case defined above.

Theorem 3. Let F_q be the finite field with q elements, p be an odd prime co-prime to q and $m \ge 1$ be an integer. Suppose that the multiplicative order of q modulo p^m is p^d for some integer d (note that $0 \le d \le m$). Then, if

(i) $r \leq m$ -d, the only possible non-zero weight in $M_1^{(p)}$ $1^{(p)^r}$ is p^r, which is attained by all its q-1 non zero codewords.

(ii) $r > m-d$, the weight distribution $A_w^{(p^r)}$, $w \ge 0$ $w^{(p^r)}$, $w \ge 0$, of $M_1^{(p^r)}$ 1 $M_1^{(p^r)}$ is given by

$$
A_{w}^{(p^r)} = \begin{cases} 0 & \text{if p does not divide w;} \\ \left(\frac{p^{r-(m-d)}}{w}\right)(q-1)^{w^r} & \text{If w=p^{m-d}w', 0 \leq w \leq p^{r-(m-d)}}. \end{cases}
$$

In order to prove Theorem 3, we first prove the following

Lemma 4. Let p,q,m,d be as defind in theorem 3. Then $O_{p'}(q)$, the multiplicative order of q modulo p^r , is given by

$$
O_{p'}(q) = \begin{cases} \n\quad \text{if } r \leq m - d \\ \np^{r - (m - d)} \text{if } r > m - d \n\end{cases}
$$

Proof. First we assert that

$$
O_{p^{(m-d)}}(q) = 1 \tag{*}
$$

To prove this, let $O_{p^{m-d}}(q) = t$ =t. Working, as in [3, Lemma 1], we get $O_{p^m}(q) = tp^d$ $O_{p^m}(q) = tp^d$ As it is given that $Q_{m}(q) = p^d$. $O_{p^m}(q) = p^d$, we get t=1,which proves (*).

If $r \leq m$ -d, then by (*), we have $O_{p^r}(q) = 1$ for the case $r \geq m$ -d, working again as in [3,Lemma 1], we obtain that $O_{n^{r}}(q) = p^{r-(m-d)}$ $O_{p^{r}}(q) = p^{r-(m-r)}$.This proves the lemma.

Lemma 5. Let p,q,m,d be as in theorem 3.If r>m-d, then there exists a primitive p^{m-d} th root of unity $\beta \in F_q$, such that the vectors

$$
\sum_{j=0}^{p^{m-d}-1} \beta^{j+1} e_{i+jp^{r-(m-d)}} 0 1 \leq i \leq p^{r-(m-d)},
$$

Constitute a basis of $M_1^{(p^r)}$ 1 $M_1^{(p^r)}$ over F_q. Proof: It is trivial.

Proof of Theorem 3. (i) Let α be a primitive p^rth root of unity in some extension of F_q. If r \leq m-d, by lemma 4, the multiplicative order of q modulo p^r is 1. Therefore $\alpha^{q-1} = 1$, i.e., $\alpha \in F_q$ and the minimal polynomial of α over F_q is x- α . Hence $M_1^{(p^r)}$ 1 $M_1^{(p^r)}$ is a 1dimensional subspace of $F_q^{p^r}$ generated by

 $\frac{1}{1} = \alpha^{p^r-1} + \alpha^{p^r-2}x + \alpha^{p^r-3}x^2 + \dots + \alpha x^{p^r-2} + x^{p^r-1}$ r^{r} -1 *r r* -2 *r r* -3 2 *r r* -2 *r r* $p^{r} - 1 = \alpha p^{r-1} + \alpha p^{r-2}$
 p $p^{r-3} - 2 = \alpha p^{r-2} + p^{r-2}$ $x + \alpha^{p^r - 3} x^2 + \dots + \alpha x^{p^r - 2} + x$ *x* $\frac{x^{p^r}-1}{p^r} = \alpha^{p^r-1} + \alpha^{p^r-2}x + \alpha^{p^r-3}x^2 + \dots + \alpha^{p^r-3}$ $\frac{1}{\alpha} = \alpha^{p'-1} + \alpha^{p'-2}x + \alpha^{p'-3}x^2 + \dots + \alpha^{p'-2} + x^{p'-1}$ and therefore every codeword of (p^{r}) 1 *n*₁^(*p^r*) is a scalar multiple of $\alpha^{p^r-1} + \alpha^{p^r-2}x + \alpha^{p^r-3}x^2 + ... + \alpha x^{p^r-2} + x^{p^r-1}$. This implies that the only possible non-zero weight in $M_1^{(p^r)}$ 1 $M_1^{(p^r)}$ is p^r, which is attained by all its (q-1) non-zero codewords.

(ii) If r> m-d, by lemma 5, any codeword
$$
c \in M_1^{(p')}
$$
 can be written as $c =$
\n
$$
\sum_{i=1}^{p^{r-(m-d)}} \sum_{j=0}^{p^{m-d}-1} \alpha_i \beta^{j+l} e_{i+jp^{r-(m-d)}}, \alpha_i \in F_q
$$
\nClearly, wt(c) is $p^{m-d}w$, where w' is number
\nof non-zero α_i 's. Thus $A_w^{(p')} = 0$ if p^{m-d} does not divide w. Moreover a code word in
\n $M_1^{(p'')}$ has weight $w = p^{m-d}w$ if and only if it is a linear combination of any w' basis
\nvectors over F_q out of a total $p^{r-(m-d)}$ basis vectors of $M_1^{(p'')}$. This implies that there are
\n
$$
\left(\begin{array}{c} p^{r-(m-d)} \\ w' \end{array}\right) (q-1)^{w'} \text{ codewords in } M_1^{(p'')}
$$
 having weight $p^{m-d}w$ ', which proves the

theorem.

Example

Let p=3, r be a positive integer and q=7. As the multiplicative order of 7 modulo 3^{m} is 3^{m} ¹, which is a power of 3, we apply Theorem 3 to compute the weight distribution of 7-ary minimal cyclic code $M_1^{(3^r)}$ 1 $M_1^{(3)}$. Note that d=m-1 in this case. By Theorem 3, we see that the only possible non-zero weight in $M_1^{(3)}$ is 3, which is attained by all its 6 non-zero codewords. If $r \geq 2$, the weight distribution of $M_1^{(3^r)}$ 1 $M_1^{(3^r)}$ is given by

$$
A_i^{(3^r)} = \begin{cases} 0if 3 does not divide i, \\ \begin{pmatrix} 3^{r-1} \\ j \end{pmatrix} & if i = 3 j, 0 \le j \le 3^{r-1}. \end{cases}
$$

REFERENCES

[1]A.Sharma, G.K.Bakshi, The weight distribution of some irreducible cyclic codes, Finite Fields Appl. (2011).

[2]C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inform, Theory 55 (3) (2009) 955-960.

[3]A.Sharma, G.K.Bakshi, V.C.Dumir, M.Raka, Cyclotomic numbers and primitive idempotents in the ringGF(q)[x]/(x^{p^n} –1). Finite Fields Appl. 10 (4)(2004) 653-673.

[4]A.Sharma, G.K.Bakshi, M.Raka, The weight distribution of irreducible cyclic codes of length 2^m, Finite Fields Appl. 13 (4) (2007) 1086-1095.

[5] R.Sehgal,R.L.Ward, Weight distribution of some irreducible cyclic codes, Math. Comp. 46 (173) (1986) 341-354.

[6]F.J.Macwilliams, N.J.A. Sloane,Theory of Error Correcting Codes, North-Holland, Amsterdam, 1977.