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ABSTRACT Let Fq be the finite field with q elements, p be an odd prime co-prime to q and m ≥ 1 be an 

integer. In this paper, we explicitly determine the weight distribution of all the minimal cyclic codes of 

length pm over Fq from their generating polynomials in a special case, when the multiplicative order of q 

modulo pm is a power of p. 
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INTRODUCTION 

Let Fq be the finite field with q elements and n be a positive integer co-prime to q. A 

cyclic code C of length n over Fq is a linear subspace of Fq
n
 with the property that if (a0, 

a1, …, an-1)  C, then the cyclic shift  (an-1, a0, …, an-2) is also in C. A cyclic code C of 

length n over Fq is also called a q-ary cyclic code of length n. We can also regard C as an 

ideal in the principal ideal ring Rn := Fq[x]/ 1nx  under the vector space isomorphism 

from Fq
n
 to Rn given by (a0, a1, … , an-1)  a0+a1x+…+an-1x

n-1
. 

 

It is known that any ideal C in Rn is generated by a unique monic polynomial g(x), which 

is a divisor of (x
n
-1), called the generating polynomial of C. A minimal ideal in Rn is 

called a minimal cyclic code of length n over Fq. 

 

If C is a cyclic code of length n over Fq and vC, then the weight of v, wt(v), is defined 

to be the number of non-zero coordinates in v. 

 

If )(n

wA  denotes the number of codewords in C of weight w, w≥ 0, then the list 

)()(

1

)(

0 ,...,, n

n

nn AAA  is called the weight distribution of C. The weight distribution of 

minimal cyclic codes has been an interesting object of study for a long time and is known 

in some cases. Ding [2] determined the weight distribution of q-ary minimal cyclic codes 
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of length n provided 2 4
1

)(





n

q
qOn

, where )(qOn denotes the multiplicative order of q 

modulo n. He also pointed out that the weight formulas become quite messy if 

5
1

)(




n

q
qOn

 and therefore finding the weight distribution of q-ary minimal cyclic code 

is a notoriously difficult problem. 

 

In this paper, we determine the weight distribution of all the minimal cyclic codes of 

length p
m
 over Fq, where p is an odd prime co-prime to q and m≥1 is an integer, for the 

case where multiplicative order of q modulo p
m
 is a power of p. In Section 2, we list all 

the minimal cyclic codes of length p
m

 over Fq and show that in order to determine the 

weight distribution of any of these codes, it is sufficient to find the weight distribution of 

the q-ary minimal cyclic code of length p
r
, 1≤r≤m, which corresponds to the q-

cyclotomic coset containing 1. In Section 3, we find the weight distribution of the 

minimal cyclic code of length p
r
, 1≤r≤m, which corresponds to the q- cyclotomic coset 

containing 1 in the case defined above. Finally, in last, we also give an example. 

 

2. Minimal cyclic codes and their weight distribution 

Let F be the finite field with q elements and let n be a positive integer co-prime to q. Let 

α denote a primitive nth root of unity of some extension field of Fq. For any integer s, 0≤ 

s≤ n-1, the q -cyclotomic coset of s modulo n is the set 

                             Cs := {s, sq, sq
2
,…, sq

n
}, 

 

Where n is the least positive integer such that sq  s(mod n). Corresponding to the q-

cyclotomic coset Cs, define 





sCj

jn

s xxM )(:)()(   

and 

)(n

sM :=the ideal in Rn generated by 
)(

1
)(

xM

x
n

s

n 
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It is known that )()( xM n

s  is the minimal polynomial of s  over Fq and )(n

sM  is a minimal 

cyclic code of length n over Fq, called the q-ary minimal cyclic code of length n 

corresponding to the q-cyclotomic coset Cs. Furthermore, if Cs1, Cs2,…, Csk are all the 

distinct q-cyclotomic cosets modulo n, then )()(

2

)(

1 ,...,, n

sk

n

s

n

s MMM are precisely all the 

distinct minimal cyclic codes of length n over Fq. We have the following: 

 

Theorem 1. Let Fq be the finite field with q elements, p be an odd prime co-prime to q 

and m≥ 1 be an integer. Let g be a primitive root modulo p
m
. 

(i) The codes M 1
)(

)(
0,10,, )()(

0 




qo

p
kmjM

jm

m

jk

m

p

jm
p

pg

p 
, are precisely all the 

distinct minimal cyclic codes of length p
m
 over Fq, where denotes   Euler’s Phi function. 

(ii) All the non-zero codewords in )(

0

mpM  have weight p
m
. 

(iii) The code )( m

jk

p

pg
M  is equivalent to the code )( m

j

p

p
M and therefore they have the 

same weight distribution. 

(iv) )( m

j

p

p
M  Is the repetition code of the minimal cyclic code )(

1

jmpM


 of length 

corresponding to the q-cyclotomic coset containing 1, repeated p
j
 times. Furthermore, for 

any w≥ 0, 

                       




  )(

'

)( 0
jm

m

p

w

j

p

w
A

ifp
A if p does not divide w; 

                                             If w=p
j
w’, 0≤w’≤p

m-j
. 

Where 0),.()( 


wArespA
jmm p

w

p

w , denote the weight distribution of )..( )(

1

)( jmm

j

pp

p
MrespM


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Proof. By [3, Lemma 1], all the distinct q-cyclotomic coset modulo p
m
 are given by 

1
)(

)(
0,10,,0 





qo

p
kmjCC

jm

jk

p

jm

pg


. Therefore, (i) follows, (ii) and (iii) are 

obvious. The proof of (iv) is similar to that of Lemma 2 of [4]. 

It thus follows from the above theorem that the weight distribution of all the q-ary 

minimal cyclic code of length p
m

 can be determined from the weight distribution of q-ary 

minimal cyclic code )(

1

rpM  of length p
r 
(1≤ r ≤m), which corresponds to the q-cyclotomic 

coset containing 1. 

 

3. The weight distribution of )(

1

RpM  , 1≤ r≤ m 

We use some notations like Pt(v), L(v1, v2,…, vt), N(v) which are described in 

[1].Throughout this section, Fq denotes the finite field with q elements , p be an odd 

prime co-prime to q and m≥ 1, an integer. Let 1 ≤r ≤m be fixed throughout. In this 

section, we determine the weight distribution of q-ary minimal cyclic code )(

1

rpM  of 

length p
r
 corresponding to the q-cyclotomic coset containing 1, for the case defined 

above. 

 

Theorem 3. Let Fq be the finite field with q elements, p be an odd prime co-prime to q 

and m ≥ 1 be an integer. Suppose that the multiplicative order of q modulo p
m
 is p

d
 for 

some integer d (note that 0 ≤ d  <m). Then, if  

(i) r ≤ m-d,the only possible non-zero weight in   
rpM )(

1
  is  p

r
  ,which is attained by all its 

q-1 non zero codewords. 

(ii) r > m-d, the weight distribution 0,)( wA
rp

w , of )(

1

rpM      is given by  

                    





  '

'

)(

)1)((

0
)( wp

w

p

w
q

A dmr

r if p does not divide w; 

                                                      If w=p
m-d

w’,0 ≤w’≤ p
r-(m-d)

. 

In order to prove Theorem 3, we first prove the following 
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Lemma 4. Let p,q,m,d be as defind in theorem 3.Then   )(qO rp
 ,the multiplicative order 

of q modulo p
r
   ,is given by 

                                     









 dmifrp

dmifr
qO

dmrpr )(

1
)(  

                                

Proof. First we assert that  

                            1)()(  qO dmp
                            (*) 

 

To prove this, let   tqO dmp
 )(    =t. Working, as in [3, Lemma 1], we get   d

p
tpqO m )(        

.As it is given that    d

p
pqO m )(       ,we get t=1,which proves (*). 

If r ≤ m-d, then by (*),we have )(qO rp
 =1.for the case r   >m-d, working again as in 

[3,Lemma 1],we obtain that     )()( dmr

p
pqO r

         .This proves the lemma. 

 

 

Lemma 5. . Let p,q,m,d be as in theorem 3.If  r>m-d  ,then there exists a primitive  p
m-d

 

th root of unity  qF   ,such that the vectors 

                              ,1. )(
1

0

1
)(

dmr
p

j
jpi

j pie

dm

dmr







 


  

Constitute a basis of  )(

1

rpM    over Fq. 

Proof: It is trivial. 

 

Proof of Theorem 3. (i) Let α be a primitive p
r
th root of unity in some extension of Fq..  

If r ≤m-d, by lemma 4, the multiplicative order of q modulo p
r
 is 1. Therefore α

q-1
 = 1, 

i.e., α Fq and the minimal polynomial of α over Fq is x-α. Hence )(

1

rpM is a 1-

dimensional subspace of 
rp

qF  generated by 
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122321 ...
1  



 rrrrr

r

ppppp
p

xxxx
x

x



  and therefore every codeword of 

)(

1

rpM  is a scalar multiple of 122321 ...  
rrrrr ppppp xxxx    .This implies 

that the only possible non-zero weight in )(

1

rpM  is p
r
, which is attained by all its  (q-1) 

non-zero codewords. 

 

(ii) If r> m-d, by lemma 5, any codeword c )(

1

rpM   can be written as c= 

qijpi

j
p

i

p

j i Fe dmr

dmr
dm














   ,)(

)(

1

1

1

0
 . Clearly, wt(c) is p

m-d
w’    , where w’ is  number 

of non-zero αi’s. Thus )( rp

wA = 0 if p
m-d

 does not divide w. Moreover a code word in 

)(

1

rpM   has weight w=p
m-d

w’ if and only if it is a linear combination of any w’ basis 

vectors over Fq out of a total p
r-(m-d)

 basis vectors of 
)(

1

rpM . This implies that there are 

'

)(

)1(
'

w

dmr

q
w

p













 

 codewords in )(

1

rpM  having weight  p
m-d

w’, which proves the 

theorem. 

 

Example 

Let p=3, r be a positive integer and q=7. As the multiplicative order of 7 modulo 3
m
 is 3

m-

1
, which is a power of 3, we apply Theorem 3 to compute the weight distribution of 7-ary 

minimal cyclic code )3(

1

r

M . Note that d=m-1 in this case. By Theorem 3, we see that the 

only possible non-zero weight in 
)3(

1M is 3, which is attained by all its 6 non-zero 

codewords. If r ≥ 2, the weight distribution of )3(

1

r

M is given by 

                                         .30,33

,30
11)3(






















  rr

i jjifi

j

ideidoesnotdivif

A
r
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